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TECHNICAL MEMORANDUM NO. 1231

REPORT ON INVESTIGATION OF DEVXLOPED TURBUIIENCF&

The recent experiments
resistemce of flowing water

By L. Prsndtl

by Jakob and E&k
in smooth pipes,

(reference 1) “on the
which are in good aweanent

with earlier measurements by Stenton and Pannell (referenc~ 2), ~ave
caused me to change qy opinion that the empirical Blasius law (resist-
ance proportional to the 7/4 power of the mean velocity) was applicable
up to arbitrarily high Remolds numbers. According to the new tests
the exponent approaches 2 with increasing Reynolds nmber, where it
remains an open question whether or not a specific finite limiting
value of the resistance factor L is obtained at R = ~.

With the collapse of Blasius: law the requirements which produced
the relation that the veloci~ in the proximity of the wall varied in
proportion to the 7th rootof the well distance must also become void
(reference 3). However, it is found that the fundamental assumption
that led to this relationship csn be generalized so as to furnish a
velocity distribution for eny empirical resistance law. These funda-
mental assumptions can be so expressed that for the law of velocity
distribution in proximity of the well as well as for that of friction
at the wall, a fom can be found in which the piye diameter no longer
occurs, or in other words, that the processes in proximity of a wall
sre not dependent upon the dist=ce of the opposite wall.

For the velocity u (t- average value) at y distance from the

= (vwall only one nondimensional c- then be f~dj ~e~j ~ = kine-

matic viscosity), giving for u a formula of the fo~

where C is a velocity
stress at the wall then

()u=c(p~ (1)

and q an erbitr~ function. The shearing
must be

T = @C2 (2)

where g is a constant. .

+’>ericht fiberUntersuchwen zur ausgebildeten Turbulent.”

Zeitschrift ffi angewandte Mathematik und Mechanik, vol. 5, no. 2,
April 1925, pp. 136-139.
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dzny
To obtain the function q we proceed from the value ~,

by theory would be constant = 7 and put

dlny
—= f(u)
d2nu

where a = zn~ . With ~ U = v and lny=a-~+ lnv, formula

becomes

du
— = f(a) + 1,
dq

i

and, after integration and removal of logarithms,

u= PCe &
which, after including

gives the velocity

The-empirical

function of + (ii

o
y=~+

profile In parsmeter representation.

law for wdl fldction reads T= X@i2, with h

= mean velocity, a = pipe diameter).

1231

which

(3)

(3)

(4)

(:)

a

.

b

Discounting for simplicity the difference between the mean velocity
and the velocity in the center u~ and assuming for it the value from
formula (4), although it is no longer exactly true in the pipe center,

ula
we put with U1 = 7~

- 2n?U= g(a~) (6)

By (2) and (4) we get
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or

rldu

2d=- g(q) + 2 f(a) + 1 = ~o~t. (7)

hence after differentiation with respect to al

2 2- g’(u)
g’(al) =

1 + f(ul) w ‘(u) = g’(a)
(8)

With this’the problem is solved and it ia readily seen that f(u),

which for g’(a) =* assumes the value 7 as before, increases with

decreasing g’(u). Amore accurate experimental check is awaited, but
even so it is ylainly seen that at Reynolds numbers of about 200,000
the 8th root of the wall distance is definite~ better than the i’throot.
For g’(a) =1, f(a) = 1, which corresponds to the laminsr boundary
zone.

● Furthermore I would like to speak of a formula intended for a
hydrodynamic calculation of the distribution of the base flow of a
turb~ent motion under the most varied conditions.

After various fruitless attempts gratifying success was attained.
131addition it was found that the fomla for the apparent shearing
stress T produced by the interchange of momentum, lends itself to a
very clear explanation.

In the Boussinesq formula T = P&, e is a measure for the

turbulent “exchange” and in its Umension, which is the ssme as that
of V, it is the ~roduct of a length snd a velocity. The velocity is
the transverse velocity w at which on the average the fluid bodies
advancing fimu both sides pass through the lsyer with the time average
value of the velocity = u.

The liquid bodies caning &cm the side of the greater velocity
entertain higher values of velocity u, those from the side of smaller
velocities, amed.lervslues, with the result that moraland more momentum
is transported in one direction than In the other (excepting the point
of um~). The desired length 2 is characterized by the fact that it

.

.

indicates the distance of the particular
velocities, which the liquid bodies have
time average value of the flow velocity.

lsyer, in w~ch the average u
at their passage, sre found as the
Approximated these velocities
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are u+2& and u-2& (Inciden.tslly 7 is in agreement in order

of magnitude with the dle&ter of the fluid bodies (more accurately it
is the decelerating path of the fluid bodies in the remaining fluid,
which is, however, proportional to the diameter).) AB to the length 2
it can, for the present, only le stated that it must approach zero at
the wsll, where ody bodies of tier diameter than the wall distance
can move as discussed. Elsewhere 7 is to have a very regul.a distri-
bution. If p 16 the average proportional share of the surface

occupied.by the fluid bodies entering fram one side, a momentum j%Jw2~

per second passes at this side through the unit surface, and approxi- “
mately the seineamount tiom the other side. This confirms the Boussinesq
theorem, so we can put e = 213w2.

The next problem is to find a practical formula for the mixing
speed w, This mixing speed is rapidly reduced snd must be
continuously renewed. Eence the assumption that it is produced at the
concurrence of two bodies of different velocity u and therefore ,

proportional to the velocity difference, that is, the ~~itude of @,

With this, however, if all unknowm numerical
the not m&e
becmes

This formula

For the

accurately known length 2, the

II~zadu du
T=——

@’w

factors are thrown on ‘w
apperent shearing stress

(9)

dunecessitates a correction for the case that — = O.
w

creation of velocity w the neighborhood in a certain
duwidth cooperates; it does not become zero when ~ = O; it rather can
w

be put ~oportionsl to a,statistical average value of I~
n

wthat

g
2

proportional to
Q

. If the velocity profile vsries in flow

tion, as in convergent divergent channels, the points over which
averages ere made must be shifted upstream for a certain amount,
the ~ocess of development of the velocity w takes time.

Formula (7) has tieady proved itself in many respects. In
for instance, the shearing stress is according to the equilibrium
ditions proportional to the distance r from the center, hence

(

i

f

is

iirec-

bhe
3ince

1 gipe,
con-

T ()pdu2=cr
= 7p2

w
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Assuming Z as constant gives

5

for r > 0, the reflection

of curvature is then equel

u= A- Brs/2 (lo)

for r< O (fig. 1). At r = O the radius

to 0; tsking instead of * the previously

discussed statistical value that can be app?oximatel.ywritten as

J$)2+,12(!2Jthe curvature at “r = O is finite. The actusl

velocity distributions (reference 1, p. 21) exhibit the singular behavior :
of the center very plainly (fig. 1). The refinement ~ust mentioned
needs to be applied only where increased accuracy requirements ere
involved. The tGtal velocity distribution in the piye is fairly accw
rate~ o%tained when (in the range of the 1/7 power law) 2 is put 1

~proportional to a - r)(a + r] 6/7’,a = pipe radius.

The foregoi~ formulas have also been applied to the case of the
“free turbulence, that is, flows without confining WSUS, as for
exsmple, of a fluid jet diffusing in a chsmber and to the intermingli~
of a hcnnogeneousair stresm with the adjacent air at rest, which is
entrained by it. For stationary flows of this type the formula Z = cx
is apyo@.ate, x being the distance from the point where the mixing
starts. The case reproduced in figure 2 leads to the differential

()
equation for the stream function F ~

which is solved by F“ = O or by 2cF’” + F = O. The two solutions of
tiorm velocity W variable velocity abut in F’” with discontinuity.
This and other calculations were numerically carried out by Tollmien,
who is to publish an article on it. The agi?eementof his calculations
with experimental data is excellent.

Further experimental.studies included the velocity distributions
in channels of other than circular sections with verylunusuel results
and for which the explanation has not yet been found. Slightly

lIt is approximately so that UT plotted against the cross
section of the channel gives a sloping surface.
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divergent and convergent smooth-walled channels have also been investi-
gated, rough-walled chennels ere in p?epsration. It is hoped that our
formula will prove itself here also.

Translated.by J. Vanier
Nationsl Advisory Ccmmittee
for Aeronautics
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Figure 1
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Figure 2
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